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Abstract—The expansion of Internet of Things (IoT) appli-
cations, particularly in critical systems, demands developing
effective measures against targeted radio interference attacks. To
remove such threats it is essential to identify attacks and to distin-
guish them from natural occurring interference. Furthermore, it
is desirable to develop a communication technology-independent
detection method as IoT deployments such as smart cities or
factories are usually heterogeneous. This research introduces
a technology-independent method for detecting targeted inter-
ference in IoT deployments capable of operating on resource-
constrained IoT devices. Packet loss rates and packet loss patterns
independent of the specific physical layer technology are analysed
to determine if a targeted attack is present. The proposed
approach is validated through comprehensive evaluations of two
example technologies, Narrowband-Internet of Things (NB-IoT)
and IEEE 802.15.4 Guarantee Time Slot (GTS), demonstrating
its effectiveness in detecting attacks. Our evaluation shows that
the detector can distinguish between targeted interference attacks
and the impact of naturally occurring interference.

I. INTRODUCTION

Many IoT applications are considered critical systems, and
it is important to guarantee that such deployments are resilient
to cyber-attacks. An attacker may use radio interference to
disrupt communication while minimising the risk of detection.
The attacker will selectively interfere with specific elements of
the communication protocol in order to maximize disruption
while minimising interference duration. Instead of a simple
continuous and overpowering jamming signal an attacker will
use a highly selective jamming signal with just sufficient
power to cause disruption.

It is essential to identify such an attack in order to re-
move the threat. A particular challenge in this context is to
distinguish naturally occurring interference from a deliberate
attack. It is important to distinguish these two interference
scenarios as they require different solutions. In case of natural
interference, a response might be to step up transmission
effort. In case of a targeted attack it might be better to stop
transmission temporarily and put effort on identifying and
removing the attacker. There is a need to devise methods for
targeted interference detection.

IoT deployments may use a variety of wireless communi-
cation technologies. Depending on the specific use case a dif-
ferent wireless technologies may be beneficial. In some cases
a number of wireless technologies might be used together in
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a heterogeneous setup. It is therefore desirable to devise a
targeted interference detection that can be useful to a large set
of wireless technologies.

Targeted interference detection may be executed at different
points of a network and with the help of different tools
and equipment. For example, it may be possible to execute
interference detection centrally at a base station with specialist
equipment. On the other hand, interference detection may be
carried out on IoT devices only using information available
from the existing communication transceiver. Depending on
the approach, different cost and coverage will be associated
with interference detection.

The presented work extends our previous effort to construct
an interference detector for the NB-IoT protocol based on
monitoring of loss rates [1]. We describe a novel method for
targeted interference detection that can execute on resource-
constrained IoT devices and can be used across different wire-
less technologies. The interference detection is independent
from the lower-layer (physical and MAC) specifics of the
wireless technology. The detector monitors loss rates and loss
sequence of different protocol elements. A targeted interferer
will cause loss rates and/or patterns to specific protocol
elements while natural interference will impact on all protocol
elements the same way. To perform targeted interference
detection for a wireless protocol, protocol elements need to
be defined, which are then observed technology-independent
by the detector. In this work, we show how IoT nodes using
two example technologies, NB-IoT and 802.15.4 can perform
targeted interference detection. The specific contributions of
our work are:

e Technology Independent Targeted Interference Detector:
We provide a design of a targeted interference detector
monitoring loss rates and/or loss patterns of protocol
elements in a technology-independent way.

o Example Detection Scenarios: We show how the detector
can be used in two scenarios: NB-IoT and 802.15.4 GTS.
For both scenarios we describe example attacks and how
monitoring is performed.

e Evaluation: We provide a comprehensive simulation eval-
uation of the detector for the two use cases NB-IoT and
802.15.4 GTS.



The remainder of the paper is organised as follows: in
Section II, we describe the existing related work. In Section
III, we provide a description of our threat model. In Section
IV, we present the IoT case studies subjected to targeted
jamming attacks. Section V presents the proposed Technology
Independent Targeted Interference Detector. In Section VI, we
present the experimental evaluation of the model and discuss
the results. Section VIII concludes the paper.

II. RELATED WORK

In an effort to characterise, model, and mitigate interference
in wireless IoT communication networks, numerous studies
have been undertaken. Jamming interference attacks have been
the subject of a comparatively small number of studies, with
even fewer works giving their attention to jamming attack
detection. To the best of our knowledge, no prior work has
proposed a technology independent jamming attack detection
method. Thus, we focus in the next paragraphs on work in the
IEEE 802.15.4 and Low Power Wide Area Network (LPWAN)
space as we use these technologies as examples for our work.

For IEEE 802.15.4 MAC layer jamming attacks, extensive
research works have been proposed [2]-[6]. Likewise, a range
of studies have addressed the issue of detecting jamming in
IEEE 802.15.4 networks [7]-[9].

Wood et al. [10] propose DEEJAM, a MAC-layer protocol
for defeating energy-efficient jamming in networks based on
IEEE 802.15.4. Combining four defensive mechanisms to-
gether, the protocol defeats the effectiveness of jamming from
attackers with the same capabilities as other IEEE 802.15.4
network nodes. This work focuses on IEEE 802.15.4 jamming
attacks and it differs from our research as it focuses on the
techniques to reduce/eliminate most of the impact of jamming
instead of detecting ongoing attacks.

Mahony et al. [11] propose an Intrusion Detection System
(IDS) for ZigBee networks that is based on machine learn-
ing. The model formulates an interference detection focused
entirely on analyzing received in-phase and quadrature-phase
samples from the received WSN signal. In contrast to our
research, this study employs a machine learning approach to
detect interference which would be difficult to execute on
resource constrained devices.

In a similar fashion, jamming interference in LPWANS has
been the subject of numerous studies, including those on LoRa
[12], [13], Sigfox [14] and NB-IoT [1], [15]-[17].

Ionescu et al. [17] describe energy depletion attacks on
NB-IoT devices using malicious interference. The model con-
siders jamming focused on the initial unprotected downstream
communication, MIB-NB, SIB1-NB, or SIB2-NB information,
and two different jamming approaches: message jamming and
message injection. This work is complementary to ours as it
describes attacks that we use in our evaluation. The work
focuses on the attack but does not consider detection of
interference based attacks.

III. THREAT MODEL

We assume an attacker is equipped with an IoT device
with similar capabilities to the other devices in the network.

The attacker uses the device to emit a jamming interference
signal, and it is able to monitor the communication between
the transmitter node and the target node. The attacker knows
the protocol and aims to use the jamming signal such that
communication between the nodes is still possible to evade
detection. The attacker attempts to use interference for the
shortest duration possible to reduce energy usage (the attacker
may operate on a battery-powered device) and to reduce the
likelihood of detection as the attacker does not want to be
found. Thus, the attacker will aim interference at specific pro-
tocol elements to achieve maximum impact with a minimum
interference effort. We called that a targeted attack. We assume
further that the attacker aims to disrupt the communication
channels with the attack. The attacker performs a targeted
attack by emitting a jamming signal to disrupt (parts) of a
specific physical channel. As a result, the attacker will prevent
the successful reception of specific Protocol Data Unit (PDU)
at the end device. The attacker may not be able to determine
the content of all protocol elements, as some are transmitted
encrypted. However, not all channel elements use encryption
(e.g. MIB in NB-IoT), and interference can also be applied to
encrypted signal parts.

IV. 10T CASE STUDIES AND JAMMING ATTACKS

A. Narrowband-Internet of Things (NB-1oT)

NB-IoT is a standard introduced by the Third Generation
Partnership Project (3GPP), is based on Long-Term Evolution
(LTE) and is designed for LPWAN.

For the specific case of NB-IoT, we assume that the
attacker aims to disrupt the downlink channel with jamming
interference. The attacker might monitor communication be-
tween User Equipment (UE) and Evolved Node B (eNodeB).
The attacker can perform a targeted attack by submitting a
jamming signal to disrupt parts of a specific physical channel,
e.g. Narrowband Broadcast Channel (NPBCH) [1], Narrow-
band Primary Synchronisation Signal (NPSS) and Narrow-
band Secondary Synchronisation Signal (NSSS) [15], System
Information Block (SIB) [16]. The attacker may only target
NPBCH to perform a battery depletion attack or Narrowband
Physical Downlink Shared Channel (NPDSCH) to disrupt data
transmission between a UE and eNodeB. The attacker prevents
the successful reception of specific subframes at the UE.

In this study we consider two selective jamming interference
attacks (referred to as Constant MIB and Selective MIB attack)
on the downstream NB-IoT channel based on attacks described
in [16]. Both attacks target the NPBCH transporting the
Master Information Block (MIB) in subframe 0. The MIB is
transported in eight Code Sub-blocks (CSB) which are each
repeated eight times. The Constant MIB attack assumes that
the interferer targets subframe O (of 10 subframes present
in the downlink channel). The Selective MIB attack assumes
that only 16 consecutive CSB are subject to interference as
this is the minimum level of interference required to prevent
successful decoding of the MIB. Figure 1 illustrates the
Transmission of the NPBCH-CSB with a Transmission Time



Interval (TTI) of 640ms and the Selective MIB targeted attack
to only 16 consecutive subframes.
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Fig. 1: NB-IoT Selective MIB Attack.

B. IEEE 802.15.4

The IEEE 802.15.4 MAC [18] defines two fundamental
MAC modes: (i) non-beacon enabled and (ii) beacon-enabled.

The beacon-enabled approach adopts a slotted Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA). Here,
the network coordinator periodically broadcasts beacon frames
to announce the presence of the network and provide timing
and control information. These beacons divide the channel into
superframes of the same direction. The superframe structure
is depicted in Figure 2.
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Fig. 2: IEEE 802.15.4 Superframe Structure.

A superframe is divided into two periods: a mandatory
active period and an optional inactive period. The active period
includes Contention Access Period (CAP) and Contention-
Free Period (CFP). CAP is a part of the superframe dur-
ing which devices can transmit data using a contention-
based access method. In this period, devices that need to
communicate attempt to transmit their data using a Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA)
mechanism. CSMA/CA helps avoid collisions by checking
the channel’s availability before initiating data transmissions.
The CFP period is a portion of the superframe reserved for
contention-free communication. During this period, specific
devices, typically associated with the network coordinator, can
transmit data without the need for contention. The coordinator
allocates time slots to individual devices, allowing them to
transmit data in a coordinated and collision-free manner. The
active period is equally divided into 16 slots.

In this study we consider an attack scenario using the IEEE
802.15.4 GTS in which an adversary device synchronises
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Fig. 3: Detector Design: The sequence .S, is received every T’
seconds describing PDU loss/reception. The detector decides
if a targeted attack is present.

with the Personal Area Network (PAN) coordinator through
the reception of the beacon messages. The beacon frame
contains the GTS descriptor, which indicates the GTS starting
slot, length, direction, and associated device address. The
adversary node can learn the GTS times from the coordinator
by extracting the GTS descriptor from the beacon. Once the
attacker obtains the allocated GTS times, it can create jamming
interference in any of these dedicated slots, causing a denial
of service as these slots are assumed to provide collision-free
communication [19], [2]. We refer to this attack as Constant
GTS.

V. TECHNOLOGY INDEPENDENT TARGETED
INTERFERENCE DETECTION

We monitor on the device the reception success of Protocol
Data Units (PDUs) over time. A PDU is a protocol element
received periodically by the IoT device (e.g. a beacon, a data
frame, a routing message). Not all possible PDUs need to be
tracked for targeted interference monitoring. The assumption
is that a device is able to tell if a PDU has been lost or has
been received successfully.

For targeted interference detection, the sequence of re-
ception success of the monitored PDUs is analysed. This
task can be performed independent of the specifics of a
wireless protocol and device once PDU monitoring specifics
are defined.

The assumption is that an interferer will target a specific
PDU to achieve his goal. Such an attack can be distinguished
from naturally occurring interference. Targeted interference
will cause an increased loss rate for one specific PDU. In
addition, loss patterns for a PDU will exhibit periodicity in
case of a targeted attack while natural interference will cause
a random loss patterns.

The targeted interference detector is split into a small
adapter interface layer and a detector. The adapter is specific to
the wireless protocol and device considered, while the detector
functions are protocol and device independent, and is therefore
reusable in different IoT settings.



A. Adapter

The adapter requires the ability to monitor the reception
success of 7 PDUs over a time period 7T'. The adaptor may use
a configuration syntax to specify what constitutes each PDU
(e.g. mapping of message type or slot number to PDU). During
T the adapter collects 7 sequences S,, of Os and 1s denoting
PDU, reception failure or success. In a TDMA protocol
where a PDU is mapped to a specific slot, a sequence S,
has implicit timing information; it is known when a reception
succeeded or failed. In a contention-based protocol, it is not
possible to reconstruct from the sequence S,, when each
reception failure or success occurred within 7. Every period
T, the sequences S,, are passed to the detector.

B. Detector

The detector (shown in Figure 3) receives the sequences S,
every T seconds and must make a decision if the device is
exposed to a targeted interference attack or not. The detector
consists of a Loss Rate Detector and a Loss Pattern Detector.
Each detector may be used on their own or the outputs are
fused to obtain an overall decision.

A High Threshold (HT) (named LDgr and PDgyr for
the two detectors) is implemented to filter the sequences S,
to exclude sequences that exhibit a very high packet loss. In
such cases it is impossible for any detector to make a decision;
it cannot be decided if a targeted attack exists but it is obvious
that the entire communication link is non-functional.

A Low Threshold (LT') (named LD and PDyr for the
two detectors) is implemented within the detectors decision
logic. If the observed losses are below this threshold an attack
on the specific PDU will be inefficient and we count an
ineffective attack as a non-attack case.

It has to be noted that multiple instances of Loss Rate
Detector and a Loss Pattern Detector may be executed for
each PDU to be monitored on an IoT device.

1) Loss Rate Detector (LD): The Loss Rate Detector eval-
uates the packet loss rate of one PDU in relation to the loss
rates of all other PDUs. For each monitored PDU,, (Vn €
0,1,2,3,4,...,m), we calculate the loss rate L,. As a result, a
set of loss rates L containing 7 values is collected. L indicates
the interference environment to which the device is exposed,
assuming that it is caused by either a targeted attack or natural
interference. Under a targeted attack, the investigated PDU
will exhibit a higher loss rate than other PDUs. As PDUs may
differ in packet size or may use different coding schemes, it
may be required to adjust loss rates accordingly, resulting in
the adjusted loss rate set L'. A targeted attack is present if
the adjusted loss rate in the investigated PDU L; is above the
average loss rate L'. To mitigate false alarms, we define ¢ as
a safety margin to ensure that an attack is detected only if L%
exhibits a significant deviation from the average L.

2) Loss Pattern Detector (PD): The Loss Pattern Detector
analyses the loss pattern of a single PDU. For the specific
monitored PDU, (Vn € 0,1,2,3,4,...,7n), the sequence S, is
evaluated. Thus, a set of loss sequences .5, is collected per a

specific PDU. The loss sequence S,, is processed using the
autocorrelation with autocovariance coefficients (corrcoef)
and then passing the result through an F'FT function. If
clear peaks are visible in the result a pattern exists. Under a
targeted attack, the pattern detector will be able to determine
if periodicity of losses is present; for natural interference no
clear pattern will be visible. A targeted attack is present if a
significant peak in the autocovariance function is identified.
To mitigate false alarms, we define v as a safety margin
determining the significance of a present peak.

The Fused Detector integrates the outputs of the LD and
the PD detectors. This integration involves processing the
individual outcomes through two logical operations consid-
ering the union and the intersection of the results. The final
detection decision is flagged by the Fused Detector. This dual-
decision approach facilitates a comprehensive analysis of the
detection effectiveness particularly when the nature of the
network attack is unknown.

VI1. EVALUATION SETUP
A. Simulation Environment and Scenarios

All simulations were carried out using MATLAB; we used
the LTE Toolbox for NB-IoT and the Communications Tool-
box Library for IEEE 802.15.4.

1) Narrowband-Internet of Things (NB-IoT): We simulate
downlink communication between a base station (eNodeB)
and a device (UE). The UE should determine if it is un-
der attack using the detector. The complete transmitter and
receiver signal processing chains of an NB-IoT system is
simulated. The receiver chain completes the synchronisation,
demodulation, and decoding of the NB-IoT downlink signal
transmitted by the eNodeB. In our detector configuration, the
adaption layer defines the NB-IoT downstream subframes as
the PDUs of interest. The downlink signal may be subjected
to interference, and it is possible to determine the accurate
reception of subframes; 1 if decoding was successful, and 0
if unsuccessful, creating our sequences S,,.

2) IEEE 802.15.4: We simulate a PAN coordinator and
a node receiving transmissions from the PAN coordinator
via a GTS slot. The node should determine if it is under
attack using the detector. We simulate an IEEE 802.15.4
beacon-enable MAC with GTS transmission. In our model,
the node synchronises with the PAN Coordinator through the
successful reception of a beacon. After that, the coordinator
can communicate with the device using a GTS slot.

In our detector setup, the adaption layer defines the beacon
messages and the specific GTS slot as two PDUs of interest.
Receiving a message (either beacon or GTS transmission) is
recorded a 1, a loss is recorded as O creating our sequences
S,, for the two PDUs.

B. Noise and Attacks

The communication between the transmitter device (eN-
odeB or PAN coordinator) may be susceptible to interference.
Three types of interference are considered.



e Background Noise (BN): refers to the presence of Addi-
tive White Gaussian Noise (AWGN) that remains con-
stant while the transmission channel is active.

o Background Traffic (BT): refers to the presence of noise
(interference) limited to specific time intervals. The du-
ration of these noise periods and the intervals between
them adhere to a Poisson process. This noise interfer-
ence replicates the impact of interference caused by an
additional communication network that is implemented
in the currently analysed network space.

o Targeted Attack (TA): Interference signal that is present
only in specific Protocol Data Unit (PDU)s, simulating a
targeted attack on particular protocol elements.

Each interference type can be present at different Signal to
Noise Radio (SNR) levels. The coexistence of different types
of interference is possible.

VII. RESULTS

In these experiments, we create several scenarios with and
without targeted interference attacks; we test the constant
jamming attack for NB-IoT and IEEE 802.15.4 GTS, as well
as the selective jamming attack and a third scenario that
combines constant and selective approaches to simulate a more
realistic attack when the node does not know the nature of
the attack for NB-IoT. Then, we evaluate our loss rate and
pattern detector’s detection capacity by determining whether
it can detect an attack is happening (True Positive) or if it
incorrectly asserts an attack is present (False Positive).

Considering that in a realistic scenario, even when a targeted
attack is present, some background noise may also be present,
we combine background noise (BN) and targeted attack (TA)
noise to accomplish this. We create interference signals com-
bining BN and TA at different SNR levels.

For NB-IoT, we generate 3 experiment sets with 800
transmission sequences each. i) 400 sequences in each set
are attacks (400 Constant MIB, 400 Selective MIB and 200
Constant MIB and 200 Selective MIB in the third set) with TA-
based SNR ranging from -9.75dB to 0B (steps of 0.25dB) and
BN-based SNR ranging from -16dB to -10dB (steps of 2dB).
This SNR setup guarantees that we are considering successful
attacks. ii) 400 sequences in each set have no attack. We use
here background noise (BN) based SNR ranging from 0dB to
-4.75dB (steps of 0.25dB) and background traffic (BT) based
SNR ranging from -5dB to -9.75dB(steps of 0.25dB).

For IEEE 802.15.4, we generate one set with 560 sequences,
distributed as follows: i) 280 attacks with TA-based SNR
ranging from 0.0125dB to 0.510dB (steps of 0.0125dB), and
BN-based SNR ranging from 0.26dB to 0.45dB (steps of
0.01dB). ii) 280 sequences in which no attack is present.
We use background noise (BN) based SNR ranging from
0.275dB to 0.525dB (steps of 0.0125dB) and background traf-
fic (BT) based SNR ranging from 0.0125dB to 0.250dB(steps
of 0.0125dB).
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A. Loss Rate Detector

Figure 4 shows the result of our experiments in the form
of a Receiver Operating Characteristic (ROC) curves for
Narrowband-Internet of Things (NB-IoT) and IEEE 802.15.4
GTS. We use the Area Under the Curve (AUC) as one of the
metrics to evaluate the detector design capabilities.

Figures 4a and 4b illustrate the ROC curves for the Loss
Rate Detector (LD) applied to NB-IoT MIB Constant and
Selective attack while Figure 4c shows the result if both attacks
are present. Using our experimental data, we determined the
parameters LT = 12.5 and HT = 24 provide a good fit,
and we used these settings for our LD Detector in NB-IoT.
For the Constant jamming attack, it can be observed that the

LDygryr setup performs better than the other setups. The
detector can identify 93.04% of targeted interference cases
with no false positives (an ideal setting as in a practical
deployment false alarms should be avoided). For this scenario
we obtain AUC = 99.79%).

For the Selective and Combined jamming attack, it is shown
that the LD g 7 detector performs better than the ones that
consider only one of the thresholds (LD g7 or LDpr) or no
threshold at all. The detector identifies 11.11% and 63.64% of
targeted interference cases with no false positives, respectively.
We obtain an AUC = 91.32% for the Selective attack and the
AUC = 96.01% for the Combined attack.

Figure 4d shows the Loss Rate Detector (LD) performance
detection for IEEE 802.15.4 GTS attack. Using our experi-
mental data, we determined the parameters LT = 7.5 and
HT = 55 provide a good fit. It can be seen that the LD g7 1.1
detector performs better than the ones that consider one of
the thresholds or does not threshold at all. For this optimal
scenario, the detector is able to identify 55.17% of targeted in-
terference cases with no false positives, with an AUC=97.44%.

B. Pattern Detector

Figures 5a, 5b and 5c show the ROC curves for the
Pattern Detector (PD) for NB-IoT MIB Constant, Selective and
Combined targeted interference attack, respectively. Using our
experimental data, we determined the parameters LT = 7.5
and HT = 75 provide a good fit. As expected, the detector
underperforms against constant jamming attacks as it is unable
to identify any pattern in the attack sequences. In this attack
all MIB frames are destroyed resulting in a sequence S,, of
(mostly) 1. A good performance is observed for the Selective
attack. In this scenario, when the detector applies both thresh-
olds (PDgryp), it results in an AUC = 90.18%. For the
combined attack, an acceptable performance is also observed
with an AUC = 95.41%.

C. Fused Detector

Figure 6 shows the Confusion Matrix obtained for the
optimal LDy and PD, for the Combined MIB targeted
jamming attack. The Equal Error Rate values for the LD and
PD are EER=11.72% and EER=28.178%, respectively. As can
be seen, the confusion matrix for the union of the results of the
two detectors presents a high rate of true positives and false
negatives and a low rate of true negatives, which will translate
into reducing false alarms. Meanwhile, a higher level of true
negatives is observed for the intersection operation.

VIII. CONCLUSION

We have demonstrated that it is possible to construct a
technology-independent statistical anomaly detector capable
of detecting targeted interference on IoT devices by utilising
the available data in the node as an indirect measure of
interference. We have shown that our detectors have ex-
cellent performance in detecting known-characteristic attacks
AUC = 99.79% and AUC = 97.44% for LR detector
with Constant jamming attack in NB-IoT and IEEE 802.15.4
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GTS, respectively; and AUC = 90.18% for PD detector with
Selective jamming attack in NB-IoT. Also, we have shown
that our detectors have adequate performance in detecting
interference when the UE is unaware of the nature of the
jamming attack; the Loss Rate detector has a AUC = 96.01%
and can detect 63.64% of attacks without false positives, while
the Pattern Detector has an AUC = 95.41%. Finally, we have
demonstrated that the threshold H7" has more impact than LT'.
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